You may need to adjust for your specific plating baths.
You may need to adjust for your specific plating baths.
Metal | Chemistry | Deposit | ° F | ASF | Amps | % Cathode Efficiency | Plating Time | Microinches Thickness, µ” | Microinches per Min. |
---|---|---|---|---|---|---|---|---|---|
Brass 60/40 | Cyanide | Decorative | 120 | 5 | 0.042 | 70 | 15m | 100 | 6.67 |
Bronze | K Stannate | 140 | 35 | 0.29 | 3m | 100 | 33.3 | ||
Cadmium | Cyanide | Rack | 72 | 20 | 0.168 | 95 | 6m 8s | 200 | 26.1 |
Cyanide | Barrel | 72 | 5 | 0.042 | 95 | 24m 30s | 200 | 8.16 | |
Chromium | High Chrome | Decorative | 120 | 110 | 0.92 | 15 | 4m 50s | 20 | 4.14 |
Crack Free | 120 | 200 | 1.68 | 20 | 2m | 20 | 10 | ||
Hard | 130 | 500 | 4.2 | 23 | 35s | 20 | 34.3 | ||
Sulfate | Semi-bright | 130 | 350 | 2.94 | 12 | 1m 54s | 20 | 10.53 | |
Fluoride/Sulfate | Bright | 130 | 600 | 5 | 23 | 30s | 20 | 40 | |
Acid/Sulfate | Very Bright | 140 | 600 | 5 | 24 | 29s | 20 | 41.4 | |
Copper (ous) | K Cyanide | 140 | 20 | 0.16 | 90 | 2m 53s | 100 | 34.7 | |
Na Cyanide | 130 | 30 | 0.25 | 50 | 5m 20s | 100 | 18.1 | ||
Copper (ic) | Acid Sulfate | 80 | 30 | 0.25 | 100 | 3m 36s | 100 | 27.8 | |
Acid Fluoborate | 110 | 300 | 2.52 | 100 | 26s | 120 | 230 | ||
Acid Pyrophosphate | 125 | 40 | 0.33 | 100 | 3m 19s | 100 | 37 | ||
Gold | Pure Soft | 24 Carat | 140 | 30 | 0.25 | 100 | 1m 13s | 100 | 26.0 |
Acid | 140 | 30 | 0.25 | 93 | 1m 8s | 100 | |||
Alkaline | 140 | 30 | 0.25 | 95 | 1m 9s | 100 | |||
Hard | 18 Carat | 140 | 30 | 0.25 | 70 | 1m 44s | 100 | 44.5 | |
Indium | Acid | 70 | 10 | 0.084 | 99 | 20m | 100 | 10 | |
Iridium | Acid | 100 | 10 | 0.084 | 99 | 2m | 20 | 10 | |
Lead | Fluoborate | 70 | 20 | 0.168 | 21m | 100 | 4.76 | ||
Nickel | Sulfamate | Low Stress, Electroform | 135 | 25 | 0.21 | 95 | 5m 2s | 100 | 31.7 |
High Chloride | Bright | 130 | 50 | 0.42 | 95 | 2m 31s | 100 | 41.8 | |
Sulfate Chloride | Semi-bright | 130 | 40 | 0.33 | 95 | 3m 9s | 100 | 31.7 | |
High Sulfate | Satin | 140 | 40 | 0.33 | 95 | 3m 9s | 100 | 31.7 | |
Sulfate Chloride | Dull | 85 | 25 | 0.21 | 95 | 5m 3s | 100 | 19.8 | |
High Sulfate | Barrel | 110 | 5 | 0.042 | 95 | 9m 30s | 75 | 7.9 | |
High Chloride | Barrel | 140 | 10 | 0.084 | 95 | 4m 45s | 75 | 15.8 | |
Electroless New | Semi-bright, (10.5-12%P) | 190 | 0 | 0 | NA | 9m | 75 | 8.3 | |
Electroless New | Bright (7.0-9.0%P) | 190 | 0 | 0 | NA | 7m 30s | 75 | 10 | |
Electroless Boron | 195 | 0 | 0 | NA | 5m 46s | 75 | 13 | ||
Palladium | 80 | 30 | 0.25 | 75 | 2m 50s | 100 | 37.5 | ||
120 | 30 | 0.25 | 95 | 2m 24s | 100 | ||||
Platinum | Acid | Bright | 85 | 5 | 0.042 | 120m | 100 | 0.83 | |
Rhodium | Acid | Bright | 95 | 10 | 0.084 | 20 | |||
Silver | K Cyanide | 90 | 15 | 0.13 | 100 | 2m 30s | 100 | 59.4 | |
Tin | Acid Stannous | Bright | 70 | 20 | 0.17 | 99 | 5m | 200 | 22.4 |
Alkaline Stannate | 30 | 0.25 | 75 | 8m 24s | 200 | 107.8 | |||
Acid Fluoborate | 85 | 100 | 0.85 | 99 | 1m 40s | 200 | |||
Tin-Lead | Fluoborate | 80 | 30 | 0.25 | 9m | 200 | |||
Tin-Zinc | Na Stannate | 75% Sn | 150 | 20 | 0.17 | 12m | 200 | ||
Zinc | Acid Chloride | Bright | 30 | 0.25 | 100 | 5m 31s | 200 | 30.8 | |
All Potassium | 110 | 20 | 0.17 | 97 | 8m 29s | 200 | |||
Low Ammonium | 120 | 25 | 0.21 | 97 | 6m 48s | 200 | |||
All Ammonium | 120 | 30 | 0.25 | 97 | 5m 55s | 200 | |||
Alkaline Cyanide | 85 | 30 | 0.25 | 90 | 6m 8s | 200 | 30.2 | ||
50 | 0.46 | 75 | 4m 25s | 200 | |||||
Alkaline Non-Cyanide | 85 | 30 | 0.25 | 90 | 6m 8s | 200 | 24 |
Note: Convert amps per square foot to amps per square decimeter by dividing the numbers shown above by 10.
Note: For calculating the precise internal deposit stress in an applied metallic coating on a DSA test strip, determine the weight of the deposit in grams and solve the following equation:
T = W ÷ D(7.74cm²)(2.54 cm/inch) = inches
where
T = the deposit thickness
D = the deposit density in g/cm³
High | Mid | Mid-Low | Low | |
---|---|---|---|---|
% Phosphorus | 10-13 | 7-9 | 4-6 | 1-3 |
Modulus of Elasticity GPa | 55-70 | 50-65 | 45-60 | 55-65 |
Mid-Low | Low | |
---|---|---|
% Boron | 3-5 | 0.2 – 1 |
Modulus of Elasticity GPa | 120 |
E Deposit = 7977000 PSI the Modulus of Elasticity for the plated alloy deposit.
In the Deposit Stress Analyzer formula, S = UKM divided by 3T.
M = the Modulus of Elasticity of the deposit,
EDeposit, divided by the Modulus of Elasticity of the substrate, ESubstrate. Thus, M = 7977000 PSI divided by 30,000,500, the Modulus of Elasticity of the nickel test strip. If pure nickel would be plated over the pure nickel test strip, PN: 270NI, M would equal 1.0.
In this case of nickel phosphorus alloy, however, M becomes 0.2659 and the actual internal stress of the deposit is 0.2659 times greater than that of a pure nickel deposit applied under similar conditions.
Frequently, the increase that the Modulus of Elasticity effects on the internal deposit stress of electroless applied alloy coatings is not recognized. Numerous formulas for calculating the internal deposit stress of metallic deposits do not include a correction for the difference of the Modulus of Elasticity between the deposit and the substrate material. In such cases, the calculated result can be far from the actual value.