All You Need
In One Single
Theme.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
Search here:

  • No products in the cart.

Metal Test Plating Times for the Deposit Stress Analyzer System

Suggested Plating Ranges

You may need to adjust for your specific plating baths.

Metal Chemistry Deposit ° F ASF Amps % Cathode Efficiency Plating Time Microinches Thickness, µ” Microinches per Min.
Brass 60/40 Cyanide Decorative 120 5 0.042 70 15m 100 6.67
Bronze K Stannate 140 35 0.29 3m 100 33.3
Cadmium Cyanide Rack 72 20 0.168 95 6m 8s 200 26.1
Cyanide Barrel 72 5 0.042 95 24m 30s 200 8.16
Chromium High Chrome Decorative 120 110 0.92 15 4m 50s 20 4.14
Crack Free 120 200 1.68 20 2m 20 10
Hard 130 500 4.2 23 35s 20 34.3
Sulfate Semi-bright 130 350 2.94 12 1m 54s 20 10.53
Fluoride/Sulfate Bright 130 600 5 23 30s 20 40
Acid/Sulfate Very Bright 140 600 5 24 29s 20 41.4
Copper (ous) K Cyanide 140 20 0.16 90 2m 53s 100 34.7
Na Cyanide 130 30 0.25 50 5m 20s 100 18.1
Copper (ic) Acid Sulfate 80 30 0.25 100 3m 36s 100 27.8
Acid Fluoborate 110 300 2.52 100 26s 120 230
Acid Pyrophosphate 125 40 0.33 100 3m 19s 100 37
Gold Pure Soft 24 Carat 140 30 0.25 100 1m 13s 100 26.0
Acid 140 30 0.25 93 1m 8s 100
Alkaline 140 30 0.25 95 1m 9s 100
Hard 18 Carat 140 30 0.25 70 1m 44s 100 44.5
Indium Acid 70 10 0.084 99 20m 100 10
Iridium Acid 100 10 0.084 99 2m 20 10
Lead Fluoborate 70 20 0.168 21m 100 4.76
Nickel Sulfamate Low Stress, Electroform 135 25 0.21 95 5m 2s 100 31.7
High Chloride Bright 130 50 0.42 95 2m 31s 100 41.8
Sulfate Chloride Semi-bright 130 40 0.33 95 3m  9s 100 31.7
High Sulfate Satin 140 40 0.33 95 3m  9s 100 31.7
Sulfate Chloride Dull 85 25 0.21 95 5m  3s 100 19.8
High Sulfate Barrel 110 5 0.042 95 9m 30s 75 7.9
High  Chloride Barrel 140 10 0.084 95 4m 45s 75 15.8
Electroless New Semi-bright, (10.5-12%P) 190 0 0 NA 9m 75 8.3
Electroless New Bright (7.0-9.0%P) 190 0 0 NA 7m 30s 75 10
Electroless Boron 195 0 0 NA 5m 46s 75 13
Palladium 80 30 0.25 75 2m 50s 100 37.5
120 30 0.25 95 2m 24s 100
Platinum Acid Bright 85 5 0.042 120m 100 0.83
Rhodium Acid Bright 95 10 0.084 20
Silver K Cyanide 90 15 0.13 100 2m 30s 100 59.4
Tin Acid Stannous Bright 70 20 0.17 99 5m 200 22.4
Alkaline Stannate 30 0.25 75 8m 24s 200 107.8
Acid Fluoborate 85 100 0.85 99 1m 40s 200
Tin-Lead Fluoborate 80 30 0.25 9m 200
Tin-Zinc Na Stannate 75% Sn 150 20 0.17 12m 200
Zinc Acid Chloride Bright 30 0.25 100 5m 31s 200 30.8
All Potassium 110 20 0.17 97 8m 29s 200
Low Ammonium 120 25 0.21 97 6m 48s 200
All Ammonium 120 30 0.25 97 5m 55s 200
Alkaline Cyanide 85 30 0.25 90 6m 8s 200 30.2
50 0.46 75 4m 25s 200
Alkaline Non-Cyanide 85 30 0.25 90 6m 8s 200 24

Note: Convert amps per square foot to amps per square decimeter by dividing the numbers shown above by 10.

Note: For calculating the precise internal deposit stress in an applied metallic coating on a DSA test strip, determine the weight of the deposit in grams and solve the following equation:

T = W ÷ D(7.74cm²)(2.54 cm/inch) = inches
where
T = the deposit thickness
D = the deposit density in g/cm³

Electroless Nickel – Phosphorus
High Mid Mid-Low Low
% Phosphorus 10-13 7-9 4-6 1-3
Modulus of Elasticity GPa 55-70 50-65 45-60 55-65
Electroless Nickel – Boron
Mid-Low Low
% Boron 3-5 0.2 – 1
Modulus of Elasticity GPa 120
Electroless Nickel Alloy calculation of stress using the DSA formula for the strip PN: 270NI

E Deposit = 7977000 PSI the Modulus of Elasticity for the plated alloy deposit.
In the Deposit Stress Analyzer formula, S = UKM divided by 3T.
M = the Modulus of Elasticity of the deposit,
EDeposit, divided by the Modulus of Elasticity of the substrate, ESubstrate. Thus, M = 7977000 PSI divided by 30,000,500, the Modulus of Elasticity of the nickel test strip. If pure nickel would be plated over the pure nickel test strip, PN: 270NI, M would equal 1.0.
In this case of nickel phosphorus alloy, however, M becomes 0.2659 and the actual internal stress of the deposit is 0.2659 times greater than that of a pure nickel deposit applied under similar conditions.

Frequently, the increase that the Modulus of Elasticity effects on the internal deposit stress of electroless applied alloy coatings is not recognized. Numerous formulas for calculating the internal deposit stress of metallic deposits do not include a correction for the difference of the Modulus of Elasticity between the deposit and the substrate material. In such cases, the calculated result can be far from the actual value.